THE COMBINATORIAL STRUCTURE
OF (m, n)-CONVEX SETS

BY
MARILYN BREEN

ABSTRACT

Let S be a closed subset of a Hausdor(f linear topological space, § having no
isolated points, and let c,(m) denote the largest integer » for which § is (m,n)-
convex. If ¢ (k) =0 and cy(k + 1) == 1, then

[m—%—k—z‘]

. —_°

c(my= X ( k )
i=1

2

Moreover, if T is a minimal m subset of S, the combinatorial structure of T is
revealed.
1. Introduction

Throughout, the set S will be a subset of a Hausdorff linear topological space.
Employing the terminology used by Guay and Kay [2], for integers m, n, we say
that S is (m,n)-convex iff for each m distinct points of S, at least n of the

(r; ) possible segments determined by these points are in S. For convenience, when
1Zm=0, we say S is (m,0)-convex. Thus the definition of (m, n)-convex is
meaningful for any m = 0 and for (n;) =nz0. A set Sis exactly (m,n)-convex

iff S is (m, n)-convex, and not (m, n + 1)-convex, and c,(m) will denote the unique
integer n for which S is exactly (m, n)-convex.
For notational purposes, a(k, m) will represent the following summation:

[m+k:_i]
olk,m) = X ( ;‘ )
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Finally, we will make use of the following familiar definitions:
For x,y in S, we say x sees y via S iff the corresponding segment [x, y] lies in S.
A subset T of S is visually independent via S iff for every x,yin T, x # y, x does
not see y via S,

2. A formula for ¢ (m)

For S a closed (p, g)-convex set having no isolated points, g = 1, we are interest-
ed in the possible values which may be assumed by the sequence (c(m): m = 2).
Letting k denote the largest integer for which ¢ (k) = 0, the following theorems
reveal that c(m) is uniquely determined by k for every m, and in fact ¢ (m)
= o(k, m).

THeorReM 1. If S is a closed (m,n)-convex set, n 21, then S is exactly
(mg, 1)-convex for some mgy 2 2.

Proor. Clearly S has at most j isolated points z,,z,,-:-,z; where j < m.
Letting T = S ~ {zq, -+, 2;}, T is (m — j, n)-convex. Let m, denote the smallest
positive integer for which cz{(m,) > 0. If T is convex, the result is trivial, so without
loss of generality assume m, = 3. We will show that ¢p(m,) = 1. Since c(mq — 1)
= 0, there is a visually independent subset {x,,:,X,, -} of T having my — 1
members. Since x; is not an isolated point, there is an infinite net in T~ {x,}
converging to x;. For some y in this net, [y,x;] & T forevery i, 1 <i<my— 1.
(Otherwise, there would be a subnet converging to x;, each point of which sees
via S a particular x;, and since T is closed, [x;, x;,] would lie in T, a contra-
diction.)

Thus {xy, ---,X,,,~ 1, ¥} is a set with m, members for which only one of the corre-
sponding segments lies in T. We conclude that c¢;(my) =1 and ¢ (my + j) = 1.

RemaRk. It is interesting to note that if S is not closed, the result fails. (See
Example 1 of this paper.)

THEOREM 2. Let S be a closed set having no isolated points and with c(k) = 0,
¢k + 1) =1 for some integer k. Then

[m+ k—i]

k Tk

c(m) £ X < 5 ) = a(k,m)
i=1 /

for every integer m = 0.

PrRoOF. We exhibit an m member subset of S having at most o(k, m) corre-
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sponding segments in S. Select a k member visually independent subset of S, say
{x{,%;}. For 1 £i £k, let N, denote an infinite net in S~ {x;} converging to
x,. Clearly since S is closed, there exist disjoint subnets M,, 1 < i < k, such that
for w, in M, v;in M, i #j, [w,v,] £ S.

Foreach i, 1 <i <k, let S, be a set consisting of exactly [ m+ k-

il ...
X ] distinct

points from M;. Clearly to each S; there correspond at most

)

2

segments lying in S. Furthermore, letting j denote the smallest positive integer for
which k divides m — j, 1 £j £k, and

k k i . i oy oy
card (91 Si)=i=2,' [m+kk z] =J(m+kk i) +(k J)]im Do,

Thus we have an m member subset of S for which there are at most a(k,m ) corre-

sponding segments in S, and c,(s} < o(k, m).
Theorem 2 may be restated to include the case for S having isolated points, as
we see in the following corollary.

CorOLLARY 1. If S is a closed set having j isolated points, with c(k + ) =0
and c(k+j+ 1) =1, then c¢(m+j) = o(k, m).

To obtain a formula for c(m), it remains to show that c¢(m) = o(k, m). The
following lemma will be useful.

Lemma 1. If S is any set for which c(k) =0 and c(k + 1) =1, then given
any m member subset T of S, there is some point of T which sees via S at least

[m; 1] of the remaining points in T.

Proor. If k=1, S is convex and the result is trivial. If m < k + 1, then there
is some m member subset of S having no corresponding segment in S, and again
the result is trivial.

Let 2<k+ 1< m. For the moment, assume that T contains a k member
visually independent subset R. Then each of the remaining m — k points in T
must see via S at least one member of R, and by the pigeon-hole principle, some
m-—k

k
members of T ~ R otherwise.

Now if k divides m, then

point of R sees at least

members of T ~ R if k divides m, and [m ; k] +1



370 MARILYN BREEN Israel J. Math.,

m—k_m_l_ m—1
E  k - k ’

the desired result. Otherwise,
m—k 1= ml] _[m— 1
k k] k

If T contains at most a (k — j) member visually independent subset, 1 <j < k,
then an identical argument shows that some point of T sees via S at least

and the result is true.

=J
It is easy to see that the result in Lemma 1 is best possible. (For example, let

[nl: — 1 ] of the remaining points in T, completing the proof.

S be a union of k disjoint convex sets, none a singleton point.)

Using Lemma 1, we obtain a formula for ¢ (m).

THeOREM 3. If S is any set for which ¢(k)=0 and c (k+1)=1, then
c(m) = ok, m).

Proor. We assume that 2 £ k + 1 £ m, for otherwise the result is trivial. The
proof is by induction. Since ¢k + 1) =1 = o(k,k + 1), the result is true for
m=k+ 1.

Assume the result true for m < n to prove for m = n. Let T be an n member
subset of S. By the lemma, there is some point x in T which sees via S at least

[n ;1 ] of the remaining points in T. We examine T ~ {x}. Since T ~ {x}

consists of (n — 1) points in S, by our induction hypothesis, there are at least
o(k,n — 1) corresponding segments in S. Thus there are at least o(k, n—1)

+ [" — 1 ] segments in S corresponding to T.

k

However,

l:n-—1+k—i:| [wk-:}

k k n-—1 k+1 ———k n—l
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Thus there are at least o(k,n) segments in S corresponding to T, and the in-
duction is complete. We conclude that c(m) = a(k, m).

COROLLARY 1. Let S be a closed (p, q)-convex set, ¢ 2 1, S having no isolated
points, and let k be the unique integer for which c(k)=0 and c{k+ 1) = 1.
Then c(m) = o(k, m) for every m.

COROLLARY 2. Let S be a closed (p, q) convex set, g = 1, S having exactly j
isolated points, and let k be the unique integer for which c¢(k + j) = 0 and
ek +j+ 1) =1. Then c(m +j) = a(k, m).

3. Minimal 7 subsets of S

Let S be an (m, n)-convex set. We say an m member subset T of S is a minimal
m subset of S iff exactly c(m) of the segments determined by T lie in S. The
following lemma and theorem reveal the combinatorial structure of such a T.

LeMMA 2. Let S be a closed set having no isolated points, with c(k) =0
and c(k + 1) = 1. If T is a minimal m subset of S, then no point of T sees more

than [rﬁ-%l] of the remaining points of T. Moreover, T contains a descending

chain of sets {T;} where each T; is a minimal j subset of S, 1 <j = m.

Proor. If some x in T sees via S more than [m— 1] of the points in T ~ {x},

k
m—1

then since a(k,m — 1) + [T] = g(k,m) = c¢{m), T ~ {x} necessarily has

fewer than o(k, m — 1) corresponding segments in S. However ok, m — 1)
= ¢(m — 1), so this is impossible. We have a contradiction, and the first statement

18 proved. |
By Lemma 1, some point x, in T sees via S at least [ﬂ%—] points of
T ~ {x,}, so such an x, must see via S exactly [ﬁ%—} points of T ~ {x,},

and T ~ {x,} has exactly c¢(m — 1) corresponding segments in S. Thus T ~ {x,}
= T,_; is a minimal (m — 1) subset of S. By induction it is easy to define a
descending chain {TJ} of subsets of T, 1 £ j £ m, where each T; is a minimal j
subset of S.

REMARK. Lemma 2 may be suitably adapted in case S has isolated points.

THEOREM 4. Let S be a closed set having no isolated points, with ¢ (k) =0
and c(k + 1) = 1. If T is a minimal m subset of S, then the members of T may
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be partitioned into disjoint subsets C;,,1£i £ [Ln—-—l_kk;l] , such that for
1=5ig [nki], each C, consists of exactly k visually independent points, and

m

C[mfk]+ 1 consists Of m — k[ T

] visually independent points.

Proor. The proof is by induction. If 1 £ m £ k, then T = C,, and the theorem
is trivially satisfied. If m = k + 1, T necessarily contains a k member visually
independent subset C,. The remaining pointin T yields C,.

Assume the result true for m, k + 1 < m < n, to prove for m = n. Let j denote
the smallest positive integer for which k divides n — j. Clearly 1 £j < k. Using
the procedure employed in the proof of Lemma 2, we may select points
X1,X3,+-,x; in T such that for each i, x; sees via S exactly [ﬁ—k?—l:, points of

T~ {xy, %1}, and T ~ {x,---,x;} is a minimal (n — i) subset of S,1<i <.

. -1 .. .
By Lemma 2, no point of T sees more than [n ] of the remaining points of
n—1

k

{xy,+,x,—1}, and the set {x;,-,x;} is visually independent.

T. Thus since [ ] = [nk— l] for 1 <i<j, every x; sees no point of

Since T ~ {x,, -+, x;} is a minimal (n — j) subset of S, by our induction hy-

n—j+k—-11 n~j [n—1
T ]_ T —[ A disjoint k member sub-

sets, each one visually independent. These sets, together with {x,,---,x L} are seen

pothesis, this set has [

to be the required sets.

If k divides n, then j =k and we have n ; ! +1= —Z— k member sets.
Otherwise we have [n;—l] = [%] disjoint k member setsandone j = n — k [%]

member set. This completes the induction and finishes the proof.

It is interesting to notice that if we do not require the set S to be closed, then
for any m > n = 1, there is a set which is (m, n)-convex and connected. Also, S
may be constructed so that it is (my,0)-convex for every m, < m, as Example 1
reveals.

ExaMPLE 1. Let T be a triangle in R?, L one of its sides. For m=n +1,
choose points x,---,x, on L with x, and x, vertices of T. Let S=(T ~ L)
U {xy,,x,}. Then S is (n + 1,n)-convex. If n=1, S is convex. (See Fig. 1.)
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Fig. 1

Inductively, for m = n + j, j = 2, join j — 1 copies of S as in Fig 2. (Note that

two successive copies share all but two of their special x; points.)

Fig. 2

Figure 2 may be altered by slicing off i peaks, 0 < i < j — 2. The resulting figure

S, is exactly (n + j, n)-convex and (myg, 0)-convex for every mo <n +j.
Moreover, n and j do not determine c(m)form >n +j. For0<i<j—2and

m—(n+j)=j—2—1i, each S; set has a different value for ¢, (m), m>n+j

Of course o(n +j— 1,m) is still a lower bound for c¢(m) by the proof of
Theorem 3.

Although the question concerning the existence of an exactly (m, n)-convex set,
n > m = 4, is not completely solved, the existence of various (m, n)-convex sets
can be verified by appropriately adapting the sets in Example 1. For instance, in
Fig. 1, inserting j segments [x;_q,x;] which alternate along L, we obtain an
exactly (n + 1,n + j)-convex set for 2 < n, 1 £j < [n/2]. Inserting j consecutive

segments along L, we obtain an exactly (n +1,n+ (j ; 1))-convex set for
1<j<n—-1.

Of course, if we require our set to be closed, the question is settled by the corol-
laries to Theorem 3. The construction of a closed, connected, exactly (k + 1,1)-
convex set iseasy, k = 1. Hence for m = 1, » 2 0, thereisa closed connected set
which is exactly (m, n)-convex if and only if for some 1<k £ m, n= ok, m).
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Similarly, if we allow isolated points, for mg = 1, n = 0, there is a closed, exactly
(mgq, n)-convex set if and only if there exist some j = 0 and some 1 < k £ m such
that mg = m + j and n = o(k, m).

NotTe. The referee has pointed out that a paper soon to be published by
J. Kaapke [1] offers an alternate approach to the proof of Theorem 1. Also,
alternate proofs of Theorems 2 and 3 may be obtained from a theorem of Turin
[3] and a formula in remark 2 of [2].
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