THE COMBINATORIAL STRUCTURE OF (m, n)-CONVEX SETS

BY

MARILYN BREEN

ABSTRACT

Let S be a closed subset of a Hausdorff linear topological space, S having no isolated points, and let $c_s(m)$ denote the largest integer n for which S is (m,n)-convex. If $c_s(k) = 0$ and $c_s(k + 1) = 1$, then

$$c_s(m) = \sum_{i=1}^k \left(\begin{bmatrix} \frac{m+k-i}{k} \\ 2 \end{bmatrix} \right) .$$

Moreover, if T is a minimal m subset of S, the combinatorial structure of T is revealed.

1. Introduction

Throughout, the set S will be a subset of a Hausdorff linear topological space. Employing the terminology used by Guay and Kay [2], for integers m, n, we say that S is (m, n)-convex iff for each m distinct points of S, at least n of the $\binom{m}{2}$ possible segments determined by these points are in S. For convenience, when $1 \ge m \ge 0$, we say S is (m, 0)-convex. Thus the definition of (m, n)-convex is meaningful for any $m \ge 0$ and for $\binom{m}{2} \ge n \ge 0$. A set S is exactly (m, n)-convex iff S is (m, n)-convex, and not (m, n + 1)-convex, and $c_s(m)$ will denote the unique integer n for which S is exactly (m, n)-convex.

For notational purposes, $\sigma(k, m)$ will represent the following summation:

$$\sigma(k,m) \equiv \sum_{i=1}^{k} \left(\begin{bmatrix} \frac{m+k-i}{k} \\ 2 \end{bmatrix} \right)$$

Received June 13, 1972 and in revised form March 20, 1973

Finally, we will make use of the following familiar definitions:

For x, y in S, we say x sees y via S iff the corresponding segment [x, y] lies in S. A subset T of S is visually independent via S iff for every x, y in T, $x \neq y$, x does not see y via S.

2. A formula for $c_s(m)$

For S a closed (p, q)-convex set having no isolated points, $q \ge 1$, we are interested in the possible values which may be assumed by the sequence $(c_s(m): m \ge 2)$. Letting k denote the largest integer for which $c_s(k) = 0$, the following theorems reveal that $c_s(m)$ is uniquely determined by k for every m, and in fact $c_s(m) = \sigma(k, m)$.

THEOREM 1. If S is a closed (m, n)-convex set, $n \ge 1$, then S is exactly $(m_0, 1)$ -convex for some $m_0 \ge 2$.

PROOF. Clearly S has at most j isolated points z_1, z_2, \dots, z_j where j < m. Letting $T = S \sim \{z_1, \dots, z_j\}$, T is (m - j, n)-convex. Let m_0 denote the smallest positive integer for which $c_T(m_0) > 0$. If T is convex, the result is trivial, so without loss of generality assume $m_0 \ge 3$. We will show that $c_T(m_0) = 1$. Since $c_T(m_0 - 1) = 0$, there is a visually independent subset $\{x_1, \dots, x_{m_0-1}\}$ of T having $m_0 - 1$ members. Since x_1 is not an isolated point, there is an infinite net in $T \sim \{x_1\}$ converging to x_1 . For some y in this net, $[y, x_i] \notin T$ for every $i, 1 < i \le m_0 - 1$. (Otherwise, there would be a subnet converging to x_1 , each point of which sees via S a particular x_{i_0} , and since T is closed, $[x_1, x_{i_0}]$ would lie in T, a contradiction.)

Thus $\{x_1, \dots, x_{m_0-1}, y\}$ is a set with m_0 members for which only one of the corresponding segments lies in T. We conclude that $c_T(m_0) = 1$ and $c_s(m_0 + j) = 1$.

REMARK. It is interesting to note that if S is not closed, the result fails. (See Example 1 of this paper.)

THEOREM 2. Let S be a closed set having no isolated points and with $c_s(k) = 0$, $c_s(k+1) = 1$ for some integer k. Then

$$c_{s}(m) \leq \sum_{i=1}^{k} \left(\left[\frac{m+k-i}{k} \right] \right) \equiv \sigma(k,m)$$

for every integer $m \ge 0$.

PROOF. We exhibit an m member subset of S having at most $\sigma(k, m)$ corre-

sponding segments in S. Select a k member visually independent subset of S, say $\{x_1, \dots, x_k\}$. For $1 \leq i \leq k$, let N_i denote an infinite net in $S \sim \{x_i\}$ converging to x_i . Clearly since S is closed, there exist disjoint subnets M_i , $1 \leq i \leq k$, such that for w_i in M_i , v_j in M_j , $i \neq j$, $[w_i, v_j] \notin S$.

For each $i, 1 \leq i \leq k$, let S_i be a set consisting of exactly $\left[\frac{m+k-i}{k}\right]$ distinct points from M_i . Clearly to each S_i there correspond at most

$$\left(\begin{bmatrix} \frac{m+k-i}{k} \\ 2 \end{bmatrix} \right)$$

segments lying in S. Furthermore, letting j denote the smallest positive integer for which k divides m - j, $1 \le j \le k$, and

card
$$\begin{pmatrix} \bigcup_{i=1}^{k} S_i \end{pmatrix} = \sum_{i=1}^{k} \left[\frac{m+k-i}{k} \right] = \frac{j(m+k-j)}{k} + \frac{(k-j)(m-j)}{k} = m.$$

Thus we have an *m* member subset of *S* for which there are at most $\sigma(k,m)$ corresponding segments in *S*, and $c_m(s) \leq \sigma(k,m)$.

Theorem 2 may be restated to include the case for S having isolated points, as we see in the following corollary.

COROLLARY 1. If S is a closed set having j isolated points, with $c_s(k+j) = 0$ and $c_s(k+j+1) = 1$, then $c_s(m+j) \leq \sigma(k,m)$.

To obtain a formula for $c_s(m)$, it remains to show that $c_s(m) \ge \sigma(k, m)$. The following lemma will be useful.

LEMMA 1. If S is any set for which $c_s(k) = 0$ and $c_s(k+1) = 1$, then given any m member subset T of S, there is some point of T which sees via S at least $\left\lceil \frac{m-1}{k} \right\rceil$ of the remaining points in T.

PROOF. If k = 1, S is convex and the result is trivial. If m < k + 1, then there is some m member subset of S having no corresponding segment in S, and again the result is trivial.

Let $2 \le k + 1 \le m$. For the moment, assume that T contains a k member visually independent subset R. Then each of the remaining m - k points in T must see via S at least one member of R, and by the pigeon-hole principle, some point of R sees at least $\frac{m-k}{k}$ members of $T \sim R$ if k divides m, and $\left[\frac{m-k}{k}\right] + 1$ members of $T \sim R$ otherwise.

Now if k divides m, then

$$\frac{m-k}{k}=\frac{m}{k}-1=\left[\frac{m-1}{k}\right],$$

the desired result. Otherwise,

$$\left[\frac{m-k}{k}\right] + 1 = \left[\frac{m}{k}\right] = \left[\frac{m-1}{k}\right]$$

and the result is true.

If T contains at most a (k - j) member visually independent subset, $1 \le j < k$, then an identical argument shows that some point of T sees via S at least $\left[\frac{m-1}{k-j}\right]$ of the remaining points in T, completing the proof.

It is easy to see that the result in Lemma 1 is best possible. (For example, let S be a union of k disjoint convex sets, none a singleton point.)

Using Lemma 1, we obtain a formula for $c_s(m)$.

THEOREM 3. If S is any set for which $c_s(k) = 0$ and $c_s(k+1) = 1$, then $c_s(m) \ge \sigma(k, m)$.

PROOF. We assume that $2 \le k + 1 \le m$, for otherwise the result is trivial. The proof is by induction. Since $c_s(k+1) = 1 = \sigma(k, k+1)$, the result is true for m = k + 1.

Assume the result true for m < n to prove for m = n. Let T be an n member subset of S. By the lemma, there is some point x in T which sees via S at least $\left[\frac{n-1}{k}\right]$ of the remaining points in T. We examine $T \sim \{x\}$. Since $T \sim \{x\}$ consists of (n-1) points in S, by our induction hypothesis, there are at least $\sigma(k, n-1)$ corresponding segments in S. Thus there are at least $\sigma(k, n-1)$ $+ \left[\frac{n-1}{k}\right]$ segments in S corresponding to T.

However,

$$\sum_{i=1}^{k} \left(\begin{bmatrix} \frac{n-1+k-i}{k} \\ 2 \end{bmatrix} \right) + \begin{bmatrix} \frac{n-1}{k} \end{bmatrix} = \sum_{i=2}^{k+1} \left(\begin{bmatrix} \frac{n+k-i}{k} \\ 2 \end{bmatrix} \right) + \begin{bmatrix} \frac{n-1}{k} \end{bmatrix}$$
$$= \sum_{i=2}^{k+1} \left(\begin{bmatrix} \frac{n+k-i}{k} \\ 2 \end{bmatrix} \right) + \left(\begin{bmatrix} \frac{n-1}{k} \\ 2 \end{bmatrix} \right) + \left(\begin{bmatrix} \frac{n-1}{k} \\ 2 \end{bmatrix} \right) - \left(\begin{bmatrix} \frac{n-1}{k} \\ 2 \end{bmatrix} \right)$$
$$= \sum_{i=2}^{k+1} \left(\begin{bmatrix} \frac{n+k-i}{k} \\ 2 \end{bmatrix} \right) + \left(\begin{bmatrix} \frac{n+k-1}{k} \\ 2 \end{bmatrix} \right) - \left(\begin{bmatrix} \frac{n-1}{k} \\ 2 \end{bmatrix} \right) = \sigma(k, n).$$

Thus there are at least $\sigma(k,n)$ segments in S corresponding to T, and the induction is complete. We conclude that $c_s(m) \ge \sigma(k,m)$.

COROLLARY 1. Let S be a closed (p,q)-convex set, $q \ge 1$, S having no isolated points, and let k be the unique integer for which $c_s(k) = 0$ and $c_s(k+1) = 1$. Then $c_s(m) = \sigma(k,m)$ for every m.

COROLLARY 2. Let S be a closed (p,q) convex set, $q \ge 1$, S having exactly j isolated points, and let k be the unique integer for which $c_s(k+j) = 0$ and $c_s(k+j+1) = 1$. Then $c_s(m+j) = \sigma(k,m)$.

3. Minimal *m* subsets of S

Let S be an (m, n)-convex set. We say an m member subset T of S is a minimal m subset of S iff exactly $c_s(m)$ of the segments determined by T lie in S. The following lemma and theorem reveal the combinatorial structure of such a T.

LEMMA 2. Let S be a closed set having no isolated points, with $c_s(k) = 0$ and $c_s(k+1) = 1$. If T is a minimal m subset of S, then no point of T sees more than $\left[\frac{m-1}{k}\right]$ of the remaining points of T. Moreover, T contains a descending chain of sets $\{T_j\}$ where each T_j is a minimal j subset of S, $1 \le j \le m$.

PROOF. If some x in T sees via S more than $\left[\frac{m-1}{k}\right]$ of the points in $T \sim \{x\}$, then since $\sigma(k, m-1) + \left[\frac{m-1}{k}\right] = \sigma(k, m) = c_s(m)$, $T \sim \{x\}$ necessarily has fewer than $\sigma(k, m-1)$ corresponding segments in S. However $\sigma(k, m-1) = c_s(m-1)$, so this is impossible. We have a contradiction, and the first statement 1s proved.

By Lemma 1, some point x_1 in T sees via S at least $\left[\frac{m-1}{k}\right]$ points of $T \sim \{x_1\}$, so such an x_1 must see via S exactly $\left[\frac{m-1}{k}\right]$ points of $T \sim \{x_1\}$, and $T \sim \{x_1\}$ has exactly $c_s(m-1)$ corresponding segments in S. Thus $T \sim \{x_1\}$ $\equiv T_{m-1}$ is a minimal (m-1) subset of S. By induction it is easy to define a descending chain $\{T_j\}$ of subsets of T, $1 \leq j \leq m$, where each T_j is a minimal j subset of S.

REMARK. Lemma 2 may be suitably adapted in case S has isolated points.

THEOREM 4. Let S be a closed set having no isolated points, with $c_s(k) = 0$ and $c_s(k+1) = 1$. If T is a minimal m subset of S, then the members of T may be partitioned into disjoint subsets C_i , $1 \leq i \leq \left[\frac{m+k-1}{k}\right]$, such that for $1 \leq i \leq \left[\frac{m}{k}\right]$, each C_i consists of exactly k visually independent points, and $C_{[m/k]+1}$ consists of $m - k\left[\frac{m}{k}\right]$ visually independent points.

PROOF. The proof is by induction. If $1 \le m \le k$, then $T = C_1$, and the theorem is trivially satisfied. If m = k + 1, T necessarily contains a k member visually independent subset C_1 . The remaining point in T yields C_2 .

Assume the result true for m, k + 1 < m < n, to prove for m = n. Let j denote the smallest positive integer for which k divides n - j. Clearly $1 \le j \le k$. Using the procedure employed in the proof of Lemma 2, we may select points x_1, x_2, \dots, x_j in T such that for each i, x_i sees via S exactly $\left[\frac{n-i}{k}\right]$ points of $T \sim \{x_1, \dots, x_{i-1}\}$, and $T \sim \{x_1, \dots, x_i\}$ is a minimal (n-i) subset of $S, 1 \le i \le j$. By Lemma 2, no point of T sees more than $\left[\frac{n-1}{k}\right]$ of the remaining points of

T. Thus since $\left[\frac{n-1}{k}\right] = \left[\frac{n-i}{k}\right]$ for $1 \le i \le j$, every x_i sees no point of $\{x_1, \dots, x_{i-1}\}$, and the set $\{x_1, \dots, x_j\}$ is visually independent.

Since $T \sim \{x_1, \dots, x_j\}$ is a minimal (n-j) subset of S, by our induction hypothesis, this set has $\left[\frac{n-j+k-1}{k}\right] = \frac{n-j}{k} = \left[\frac{n-1}{k}\right]$ disjoint k member subsets, each one visually independent. These sets, together with $\{x_1, \dots, x_j\}$ are seen to be the required sets.

If k divides n, then j = k and we have $\left[\frac{n-1}{k}\right] + 1 = \frac{n}{k}$ k member sets. Otherwise we have $\left[\frac{n-1}{k}\right] = \left[\frac{n}{k}\right]$ disjoint k member sets and one $j = n - k\left[\frac{n}{k}\right]$ member set. This completes the induction and finishes the proof.

It is interesting to notice that if we do not require the set S to be closed, then for any $m > n \ge 1$, there is a set which is (m, n)-convex and connected. Also, S may be constructed so that it is $(m_0, 0)$ -convex for every $m_0 < m$, as Example 1 reveals.

EXAMPLE 1. Let T be a triangle in \mathbb{R}^2 , L one of its sides. For m = n + 1, choose points x_1, \dots, x_n on L with x_1 and x_n vertices of T. Let $S \equiv (T \sim L) \cup \{x_1, \dots, x_n\}$. Then S is (n + 1, n)-convex. If n = 1, S is convex. (See Fig. 1.)

Inductively, for m = n + j, $j \ge 2$, join j - 1 copies of S as in Fig 2. (Note that two successive copies share all but two of their special x_i points.)

Fig. 2

Figure 2 may be altered by slicing off *i* peaks, $0 \le i \le j - 2$. The resulting figure S_i is exactly (n + j, n)-convex and $(m_0, 0)$ -convex for every $m_0 < n + j$.

Moreover, *n* and *j* do not determine $c_s(m)$ for m > n + j. For $0 \le i \le j - 2$ and $m - (n + j) \ge j - 2 - i$, each S_i set has a different value for $c_{s_i}(m)$, m > n + j. Of course $\sigma(n + j - 1, m)$ is still a lower bound for $c_s(m)$ by the proof of Theorem 3.

Although the question concerning the existence of an exactly (m, n)-convex set, $n > m \ge 4$, is not completely solved, the existence of various (m, n)-convex sets can be verified by appropriately adapting the sets in Example 1. For instance, in Fig. 1, inserting j segments $[x_{i-1}, x_i]$ which alternate along L, we obtain an exactly (n + 1, n + j)-convex set for $2 \le n$, $1 \le j \le \lfloor n/2 \rfloor$. Inserting j consecutive segments along L, we obtain an exactly $\binom{n+1, n+\binom{j+1}{2}}{-1}$ -convex set for $1 \le j \le n-1$.

Of course, if we require our set to be closed, the question is settled by the corollaries to Theorem 3. The construction of a closed, connected, exactly (k + 1, 1)convex set is easy, $k \ge 1$. Hence for $m \ge 1$, $n \ge 0$, there is a closed connected set which is exactly (m, n)-convex if and only if for some $1 \le k \le m$, $n = \sigma(k, m)$. Similarly, if we allow isolated points, for $m_0 \ge 1$, $n \ge 0$, there is a closed, exactly (m_0, n) -convex set if and only if there exist some $j \ge 0$ and some $1 \le k \le m$ such that $m_0 = m + j$ and $n = \sigma(k, m)$.

NOTE. The referee has pointed out that a paper soon to be published by J. Kaapke [1] offers an alternate approach to the proof of Theorem 1. Also, alternate proofs of Theorems 2 and 3 may be obtained from a theorem of Turán [3] and a formula in remark 2 of [2].

References

1. J. Kaapke, Über eine Verallgemeinerung der Valentineschen P_3 -Eigenschaft, Geometriae Dedicata, to appear.

2. David C. Kay and Merle D. Duay, Convexity and a certain property P_m , Israel. J. Math. 8 (1970), 39-52.

3. P. Turán, On the theory of graphs, Colloq. Math. 3 (1964), 19-30.

UNIVERSITY OF OKLAHOMA NORMAN, OKLAHOMA, U.S.A.