THE COMBINATORIAL STRUCTURE **OF (m, n)-CONVEX SETS**

BY

MARILYN BREEN

ABSTRACT

Let S be a closed subset of a Hausdorff linear topological space, S having no isolated points, and let $c_s(m)$ denote the largest integer n for which S is (m,n) convex. If $c_s(k) = 0$ and $c_s(k + 1) = 1$, then

$$
c_s(m) = \sum_{i=1}^k \left(\frac{m+k-i}{k} \right) \ .
$$

Moreover, if T is a minimal m subset of S , the combinatorial structure of T is revealed.

1. **Introduction**

Throughout, the set Swill be a subset of a Hausdorff linear topological space. Employing the terminology used by Guay and Kay $[2]$, for integers m, n, we say that S is (m, n) -convex iff for each m distinct points of S , at least n of the $\binom{m}{2}$ possible segments determined by these points are in S. For convenience, when $1 \ge m \ge 0$, we say S is $(m,0)$ -convex. Thus the definition of (m, n) -convex is meaningful for any $m \geq 0$ and for $\binom{m}{2} \geq n \geq 0$. A set S is exactly (m, n) -convex iff S is (m, n) -convex, and not $(m, n + 1)$ -convex, and $c_s(m)$ will denote the unique integer *n* for which *S* is exactly (m, n) -convex.

For notational purposes, $\sigma(k, m)$ will represent the following summation:

$$
\sigma(k,m) \equiv \sum_{i=1}^{k} \left(\frac{m+k-i}{k} \right)
$$

Received June 13, 1972 and in revised form March 20, 1973

Finally, we will make use of the following familiar definitions:

For x, y in S, we say x sees y via S iff the corresponding segment $[x, y]$ lies in S. A subset T of S is *visually independent via* S iff for every x, y in T , $x \neq y$, x does not see y via S.

2. A formula for $c_s(m)$

For S a closed (p, q) -convex set having no isolated points, $q \ge 1$, we are interested in the possible values which may be assumed by the sequence $(c_s(m): m \ge 2)$. Letting k denote the largest integer for which $c_s(k) = 0$, the following theorems reveal that $c_s(m)$ is uniquely determined by k for every m, and in fact $c_s(m)$ $= \sigma(k,m).$

THEOREM 1. If S is a closed (m, n) -convex set, $n \geq 1$, then S is exactly $(m_0, 1)$ -convex for some $m_0 \geq 2$.

PROOF. Clearly S has at most j isolated points z_1, z_2, \dots, z_j where $j < m$. Letting $T = S \sim \{z_1, \dots, z_j\}$, T is $(m-j, n)$ -convex. Let m_0 denote the smallest positive integer for which $c_T(m_0) > 0$. If T is convex, the result is trivial, so without loss of generality assume $m_0 \ge 3$. We will show that $c_T(m_0) = 1$. Since $c_T(m_0 - 1)$ = 0, there is a visually independent subset $\{x_1, \dots, x_{m_0-1}\}$ of T having $m_0 - 1$ members. Since x_1 is not an isolated point, there is an infinite net in $T \sim \{x_1\}$ converging to x_1 . For some y in this net, $[y, x_i] \not\in T$ for every $i, 1 \lt i \leq m_0 - 1$. (Otherwise, there would be a subnet converging to x_1 , each point of which sees via S a particular x_{i_0} , and since T is closed, $[x_1, x_{i_0}]$ would lie in T, a contradiction.)

Thus $\{x_1, \dots, x_{m_0-1}, y\}$ is a set with m_0 members for which only one of the corresponding segments lies in T. We conclude that $c_T(m_0) = 1$ and $c_s(m_0 + j) = 1$.

REMARK. It is interesting to note that if S is not closed, the result fails. (See Example 1 of this paper.)

THEOREM 2. Let S be a closed set having no isolated points and with $c_{\epsilon}(k) = 0$, $c_s(k + 1) = 1$ *for some integer k. Then*

$$
c_s(m) \leq \sum_{i=1}^k \left(\frac{m+k-i}{k} \right) = \sigma(k,m)
$$

for every integer $m \ge 0$.

PROOF. We exhibit an *m* member subset of S having at most $\sigma(k, m)$ corre-

sponding segments in S. Select a k member visually independent subset of S, say $\{x_1, \dots, x_k\}$. For $1 \le i \le k$, let N_i denote an infinite net in $S \sim \{x_i\}$ converging to x₁. Clearly since S is closed, there exist disjoint subnets M_i , $1 \le i \le k$, such that for w_i in M_i , v_j in M_j , $i \neq j$, $[w_i, v_j] \not\in S$.

For each i, $1 \le i \le k$, let S_i be a set consisting of exactly $\left\lceil \frac{m+k-i}{k} \right\rceil$ distinct L L L points from M_i . Clearly to each S_i there correspond at most

$$
\left(\begin{bmatrix}\frac{m+k-i}{k}\\2\end{bmatrix}\right)
$$

segments lying in S. Furthermore, letting j denote the smallest positive integer for which k divides $m - j$, $1 \leq j \leq k$, and

card
$$
\begin{pmatrix} k \\ k \end{pmatrix} = \sum_{i=1}^{k} \left[\frac{m+k-i}{k} \right] = \frac{j(m+k-j)}{k} + \frac{(k-j)(m-j)}{k} = m.
$$

Thus we have an *m* member subset of S for which there are at most $\sigma(k,m)$ corresponding segments in *S*, and $c_m(s) \leq \sigma(k,m)$.

Theorem 2 may be restated to include the case for S having isolated points, as we see in the following corollary.

COROLLARY 1. If S is a closed set having j isolated points, with $c_s(k + j) = 0$ *and* $c_s(k + j + 1) = 1$, *then* $c_s(m + j) \leq \sigma(k, m)$.

To obtain a formula for $c_s(m)$, it remains to show that $c_s(m) \ge \sigma(k, m)$. The following lemma will be useful.

LEMMA 1. If *S* is any set for which $c_s(k) = 0$ and $c_s(k + 1) = 1$, then given *any m member subset T of S, there is some point of T which sees via S at least* $\left[\frac{m-1}{k}\right]$ of the remaining points in T.

PROOF. If $k = 1$, S is convex and the result is trivial. If $m < k + 1$, then there is some m member subset of S having no corresponding segment in S , and again the result is trivial.

Let $2 \leq k + 1 \leq m$. For the moment, assume that T contains a k member visually independent subset R. Then each of the remaining $m - k$ points in T must see via S at least one member of R , and by the pigeon-hole principle, some point of R sees at least $\frac{m-k}{k}$ members of $T \sim R$ if k divides m, and $\left\lceil \frac{m-k}{k} \right\rceil + 1$ members of $T \sim R$ otherwise.

Now if k divides *m,* then

$$
\frac{m-k}{k}=\frac{m}{k}-1=\left[\frac{m-1}{k}\right],
$$

the desired result. Otherwise,

$$
\left[\frac{m-k}{k}\right]+1=\left[\frac{m}{k}\right]=\left[\frac{m-1}{k}\right]
$$

and the result is true.

If T contains at most a $(k - j)$ member visually independent subset, $1 \leq j < k$, then an identical argument shows that some point of T sees via S at least $\left[\frac{m-1}{k-j}\right]$ of the remaining points in T, completing the proof.

It is easy to see that the result in Lemma 1 is best possible. (For example, let S be a union of k disjoint convex sets, none a singleton point.)

Using Lemma 1, we obtain a formula for $c_s(m)$.

THEOREM 3. If S is any set for which $c_s(k) = 0$ and $c_s(k + 1) = 1$, then $c_s(m) \geq \sigma(k, m)$.

PROOF. We assume that $2 \leq k + 1 \leq m$, for otherwise the result is trivial. The proof is by induction. Since $c_s(k + 1) = 1 = \sigma(k, k + 1)$, the result is true for $m=k+1$.

Assume the result true for $m < n$ to prove for $m = n$. Let T be an n member subset of S. By the lemma, there is some point x in T which sees via S at least $\left[\frac{n-1}{k}\right]$ of the remaining points in T. We examine $T \sim \{x\}$. Since $T \sim \{x\}$ consists of $(n - 1)$ points in S, by our induction hypothesis, there are at least $\sigma(k, n-1)$ corresponding segments in S. Thus there are at least $\sigma(k, n-1)$ + $\left\lceil \frac{n-1}{k} \right\rceil$ segments in S corresponding to T.

However,

$$
\sum_{i=1}^{k} \left(\frac{\left[\frac{n-1+k-i}{k}\right]}{2} \right) + \left[\frac{n-1}{k}\right] = \sum_{i=2}^{k+1} \left(\frac{\left[\frac{n+k-i}{k}\right]}{2} \right) + \left[\frac{n-1}{k}\right]
$$
\n
$$
= \sum_{i=2}^{k+1} \left(\frac{\left[\frac{n+k-i}{k}\right]}{2} \right) + \left(\frac{\left[\frac{n-1}{k}\right]+1}{2}\right) - \left(\frac{\left[\frac{n-1}{k}\right]}{2}\right)
$$
\n
$$
= \sum_{i=2}^{k+1} \left(\frac{\left[\frac{n+k-i}{k}\right]}{2} \right) + \left(\frac{\left[\frac{n+k-1}{k}\right]}{2}\right) - \left(\frac{\left[\frac{n-1}{k}\right]}{2}\right) = \sigma(k, n).
$$

Thus there are at least $\sigma(k,n)$ segments in S corresponding to T, and the induction is complete. We conclude that $c_s(m) \ge \sigma(k, m)$.

COROLLARY 1. Let S be a closed (p, q) -convex set, $q \ge 1$, S having no isolated *points, and let k be the unique integer for which* $c_s(k) = 0$ *and* $c_s(k + 1) = 1$. *Then* $c_s(m) = \sigma(k, m)$ for every m.

COROLLARY 2. Let S be a closed (p,q) convex set, $q \ge 1$, S having exactly j *isolated points, and let k be the unique integer for which* $c_s(k + j) = 0$ *and* $c_s(k + j + 1) = 1$. *Then* $c_s(m + j) = \sigma(k, m)$.

3. Minimal m subsets of S

Let S be an (m, n) -convex set. We say an m member subset T of S is a *minimal m subset of* S iff exactly $c_s(m)$ of the segments determined by T lie in S. The following lemma and theorem reveal the combinatorial structure of such a T.

LEMMA 2. Let S be a closed set having no isolated points, with $c_n(k)=0$ and $c_s(k + 1) = 1$. If T is a minimal m subset of S, then no point of T sees more *than* $\left[\frac{m-1}{k}\right]$ of the remaining points of T. Moreover, T contains a descending *chain of sets* $\{T_j\}$ *where each* T_j *is a minimal j subset of* S, $1 \leq j \leq m$ *.*

PROOF. If some x in T sees via S more than $\left[\frac{m}{k}\right]$ of the points in $T \sim \{x\}$ then since $\sigma(k,m-1)+ \left\lceil \frac{m-1}{k} \right\rceil = \sigma(k,m) = c_s(m)$, $T \sim \{x\}$ necessarily has fewer than $\sigma(k, m - 1)$ corresponding segments in S. However $\sigma(k, m - 1)$ $= c_s(m - 1)$, so this is impossible. We have a contradiction, and the first statement is proved.

By Lemma 1, some point x_1 in T sees via S at least $\left[\frac{m-1}{k}\right]$ points of $T \sim \{x_1\}$, so such an x_1 must see via S exactly $\left|\frac{n}{x_1}-\right|$ points of $T \sim \{x_1\}$, and $T \sim \{x_1\}$ has exactly $c_s(m-1)$ corresponding segments in S. Thus $T \sim \{x_1\}$ $\equiv T_{m-1}$ is a minimal $(m - 1)$ subset of S. By induction it is easy to define a descending chain $\{T_i\}$ of subsets of T, $1 \leq j \leq m$, where each T_j is a minimal j subset of S.

REMARK. Lemma 2 may be suitably adapted in case S has isolated points.

THEOREM 4. Let S be a closed set having no isolated points, with $c_s(k) = 0$ and $c_{n}(k + 1) = 1$. If T is a minimal m subset of S, then the members of T may *be partitioned into disjoint subsets* C_i , $1 \leq i \leq \left\lceil \frac{m+k-1}{k} \right\rceil$, such that for *L -I* $1 \leq i \leq |\tfrac{\cdot}{k}|$, each C₁ consists of exactly k visually independent points, and *I--I* $C_{\lfloor m/k \rfloor +1}$ consists of $m - k$ $\lfloor - \rfloor$ visually independent points.

PROOF. The proof is by induction. If $1 \le m \le k$, then $T = C_1$, and the theorem is trivially satisfied. If $m = k + 1$, T necessarily contains a k member visually independent subset C_1 . The remaining point in T yields C_2 .

Assume the result true for $m, k + 1 < m < n$, to prove for $m = n$. Let j denote the smallest positive integer for which k divides $n - j$. Clearly $1 \leq j \leq k$. Using the procedure employed in the proof of Lemma 2, we may select points x_1, x_2, \dots, x_j in T such that for each i, x_i sees via S exactly $\left|\frac{n-i}{k}\right|$ points of $T \sim \{x_1, \dots, x_{i-1}\}\$, and $T \sim \{x_1, \dots, x_i\}$ is a minimal $(n - i)$ subset of S, $1 \leq i \leq j$.

By Lemma 2, no point of T sees more than $\left[\frac{n-1}{k}\right]$ of the remaining points of L ,~ ..I T. Thus since $\left|\frac{z}{t}\right| = \left|\frac{z}{t}\right|$ for $1 \leq i \leq j$, every x_i sees no point of ${x_1, \dots, x_{i-1}}$, and the set ${x_1, \dots, x_j}$ is visually independent.

Since $T \sim \{x_1, \dots, x_j\}$ is a minimal $(n-j)$ subset of S, by our induction hypothesis, this set has $\left\lceil \frac{n-j+k-1}{k} \right\rceil = \frac{n-j}{k} = \left\lceil \frac{n-1}{k} \right\rceil$ disjoint k member subsets, each one visually independent. These sets, together with $\{x_1, \dots, x_n\}$ are seen to be the required sets.

If k divides n, then $j=k$ and we have $\left\lfloor \frac{n-1}{k} \right\rfloor +1 = \frac{n}{k}$ k member sets. Otherwise we have $\left\lceil \frac{n-1}{k} \right\rceil = \left\lceil \frac{n}{k} \right\rceil$ disjoint k member sets and one $j = n - k \left\lceil \frac{n}{k} \right\rceil$ member set. This completes the induction and finishes the proof.

It is interesting to notice that if we do not require the set S to be closed, then for any $m > n \ge 1$, there is a set which is (m, n) -convex and connected. Also, S may be constructed so that it is $(m_0, 0)$ -convex for every $m_0 < m$, as Example 1 reveals.

EXAMPLE 1. Let T be a triangle in \mathbb{R}^2 , L one of its sides. For $m = n + 1$, choose points x_1, \dots, x_n on L with x_1 and x_n vertices of T. Let $S \equiv (T \sim L)$ \cup { x_1, \dots, x_n }. Then S is $(n + 1, n)$ -convex. If $n = 1$, S is convex. (See Fig. 1.)

Inductively, for $m = n + j$, $j \ge 2$, join $j - 1$ copies of S as in Fig 2. (Note that two successive copies share all but two of their special x_i points.)

Figure 2 may be altered by slicing off *i* peaks, $0 \le i \le j - 2$. The resulting figure S_i is exactly $(n + j, n)$ -convex and $(m_0, 0)$ -convex for every $m_0 < n + j$.

Moreover, *n* and *j* do not determine $c_s(m)$ for $m > n + j$. For $0 \le i \le j - 2$ and $m - (n + j) \geq j - 2 - i$, each S_i set has a different value for $c_{s_i}(m)$, $m > n + j$ Of course $\sigma(n+j-1,m)$ is still a lower bound for $c_n(m)$ by the proof of Theorem 3.

Although the question concerning the existence of an exactly (m, n) -convex set, $n > m \geq 4$, is not completely solved, the existence of various (m, n) -convex sets can be verified by appropriately adapting the sets in Example 1. For instance, in Fig. 1, inserting j segments $[x_{i-1},x_i]$ which alternate along L, we obtain an exactly $(n + 1, n + j)$ -convex set for $2 \leq n, 1 \leq j \leq [n/2]$. Inserting j consecutive segments along L, we obtain an exactly $\left(n + 1, n + {\binom{j + 1}{2}}\right)$ -convex set for $1 \leq j \leq n-1$.

Of course, if we require our set to be closed, the question is settled by the corollaries to Theorem 3. The construction of a closed, connected, exactly $(k + 1, 1)$ convex set is easy, $k \ge 1$. Hence for $m \ge 1$, $n \ge 0$, there is a closed connected set which is exactly (m, n) -convex if and only if for some $1 \leq k \leq m$, $n = \sigma(k, m)$. Similarly, if we allow isolated points, for $m_0 \ge 1$, $n \ge 0$, there is a closed, exactly (m_0, n) -convex set if and only if there exist some $j \ge 0$ and some $1 \le k \le m$ such that $m_0 = m + j$ and $n = \sigma(k, m)$.

NOTE. The referee has pointed out that a paper soon to be published by J. Kaapke [I] offers an alternate approach to the proof of Theorem 1. Also, alternate proofs of Theorems 2 and 3 may be obtained from a theorem of Turán $[3]$ and a formula in remark 2 of $[2]$.

REFERENCES

1. J. Kaapke, *Ober eine Verallgemeinerung der Valentineschen P3-Eigenschaft,* Geometriae Dedicata, to appear.

2. David C. Kay and Merle D. Duay, *Convexity and a certain property P_m*, Israel. J. Math. 8 (1970), 39-52.

3. P. Tur~fn, *On the theory ofgraphs,* Colloq. Math. 3 (1964), 19-30.

UNIVERSITY OF OKLAHOMA NORMAN, OKLAHOMA, U.S.A.