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ABSTRACT 

Let S be a closed subset of a Hausdorff linear topological space, S having no 
isolated points, and let cs(m) denote the largest integer n for which S is (m,n)- 
convex. If cs(k) = 0 and c:~(k + 1) -- 1, then 

c~(rn) = s 
l=1 2 " 

Moreover, if T is a minimal m subset of S, the combinatorial structure of T is 
revealed. 

1. Introduction 

Throughout,  the set Swill be a subset of  a Hausdorff linear topological space. 

Employing the terminology used by Guay and Kay [2], for integers m, n, we say 

that S is (m, n)-convex iff for each m distinct points of S, at least n of the 

( 2 )  possible segments determined by these points are in S. For  convenience, when 

1 > m __> O, we say S is (m,O)-convex. Thus the definition of (m, n)-convex is 

meaningful for any m > O a n d f o r ( 2 ) > n > O .  A s e t S i s e x a c t l y ( m , n ) - c o n v e x  

iff S is (m, n)-convex, and not (m, n + 1)-convex, and c~(m) will denote the unique 

integer n for which S is exactly (m, n)-convex. 

For  notational purposes, tr(k, m) will represent the following summation: 

tr(k,m) - 
Im+  '1) ' (  E 
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Finally, we will make use of the following familiar definitions: 

For x, y in S, we say x sees y via S iff the corresponding segment Ix, y] lies in S. 

A subset T of S is visually independent via S iff for every x, y in T, x ~ y, x does 

not see y via S. 

2. A formula for cs(m) 

For S a closed (p, q)-convex set having no isolated points, q __> 1, we are interest- 

ed in the possible values which may be assumed by the sequence (c~(m): m __> 2). 

Letting k denote the largest integer for which c~(k) = 0, the following theorems 

reveal that c~(m) is uniquely determined by k for every m, and in fact cs(m) 

= a(k, m). 

THEOREM 1. I f  S is a closed (m, n)-convex set, n > 1, then S is exactly 

(mo, 1)-convex for  some mo >- 2. 

PROOF. Clearly S has at most j isolated points zl, z2, "", z~ where j < m. 

Letting T = S ~ {z 1, ..., z j}, T is ( m - j ,  n)-convex. Let mo denote the smallest 

positive integer for which cr(mo) > 0. If T is convex, the result is trivial, so without 

loss of generality assume m o =  3. We will show that cr(mo) = 1. Since Cr(m o - 1) 

= 0, there is a visually independent subset {xl, '",Xmo-1} of T having mo - 1 

members. Since xl is not an isolated point, there is an infinite net in T ~  {xl } 

converging to xl. For some y in this net, [-y, xi] ~ T for every i, 1 < i __< mo - 1. 

(Otherwise, there would be a subnet converging to xl,  each point of which sees 

via S a particular Xio, and since T is closed, [ x l , x J  would lie in T, a contra- 

diction.) 

Thus {xl, ...,Xmo_ 1, Y} is a set with mo members for which only one of the corre- 

sponding segments lies in T. We conclude that CT(mO) = 1 and cs(m o + j)  = 1. 

REMARK. It is interesting to note that if S is not closed, the result fails. (See 

Example 1 of this paper.) 

THEOREM 2. Let S be a closed set having no isolated points and with c~(k) = 0, 

c~(k + 1) = 1 .[or some integer k. Then 

cs(m) <= E - a(k, m) 
i=1 2 

for every integer m > O. 

PROOF. We exhibit an m member subset of S having at most a(k, m) corre- 
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sponding segments in S. Select a k member visually independent subset of S, say 

(xl, "",xk}. For 1 < i < k, let N~ denote an infinite net in S ~  {xi) converging to 

x,. Clearly since S is closed, there exist disjoint subnets M,, 1 < i _< k, such that 

for wi in Mi, vj in M r, i r j ,  [wi, vii ~ S. 

For each i, 1 < i < k, let SI be a set consisting of exactly I m + k - i 1 - - k distinct 
L J 

points from M~. Clearly to each St there correspond at most 

Im+  !1 
segments lying in S. Furthermore, letting j denote the smallest positive integer for 

which k divides m - j ,  1 < j _<_ k, and 

k 
card (,=~ S , ) =  ~ [ m + _ ~ - i ]  _ j ( m + k k - J ) + ( k - j ) ( m - j )  

_ k - -  m .  

Thus we have an m member subset of S for which there are at most a(k,m ) corre- 

sponding segments in S, and c,,(s) <= e(k, m). 

Theorem 2 may be restated to include the case for S having isolated points, as 

we see in the following corollary. 

COROLLARY 1. I f  S is a closed set having j isolated points, with cs(k + j) = 0 

and cs(k + j + 1) = 1, then c~(m + j) < a(k,m). 

To obtain a formula for c~(m), it remains to show that c~(m)> a(k, m). The 

following lemma will be useful. 

LEMMA 1. If S is any set for which cs(k ) = 0 and c~(k + 1) = 1, then 9iven 
any m member subset T of S, there is some point of T which sees via S at least 

[~--~--~] of the remaining points in T. 

PROOF. If k = 1, S is convex and the result is trivial. If m < k + 1, then there 

is some m member subset of S having no corresponding segment in S, and again 

the result is trivial. 

Let 2 < k + 1 < m. For the moment, assume that T contains a k member 

visually independent subset R. Then each of the remaining m -  k points in T 

must see via S at least one member of R, and by the pigeon-hole principle, some 

point of R sees at l e a s t - - - ~  members of T ~ R if k divides m, and + 1 

members of T ~ R otherwise. 

Now if k divides m, then 
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k k 1 

the desired result. Otherwise, 

Israel J. Math., 

However, 

k f k k+l k 
E \ 2 + = Z + i = l  i = 2  2 

+ ,  

,== 2 + 2 - - 2 

and the result is true. 

If T contains at most a (k - j )  member visually independent subset, 1 < j < k, 

then an identical argument shows that some point of T sees via S at least 

[~ _ - j l  ] of the remaining points in T, completing the proof. 

It is easy to see that the result in Lemma 1 is best possible. (For example, let 

S be a union of k disjoint convex sets, none a singleton point.) 

Using Lemma 1, we obtain a formula for c~(m). 

THEOREM 3. If  S is any set for which c,(k)= 0 and c~(k + 1)=  1, then 

c,(m) > ~(k, m). 

PROOF. We assume that 2 < k + 1 < m, for otherwise the result is trivial. The 

proof is by induction. Since cs(k + 1) = 1 = a(k,k + 1), the result is true for 

m = k + l .  

Assume the result true for m < n to prove for m = n. Let T be an n member 

subset of S. By the lemma, there is some point x in T which sees via S at least 

[ ~ - ~ ]  of the remaining points in T. We examine T,..{x}. Since T ~ { x }  

consists of (n - 1) points in S, by our induction hypothesis, there are at least 

a(k ,n -1 )  corresponding segments in S. Thus there are at least a(k, n - l )  

[ 5 _ _ ~ ]  segments in S corresponding to T. + 
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Thus there are at least a(k,n) segments in S corresponding to T, and the in- 

duction is complete. We conclude that cs(m) > a(k, m). 

COROLLARY 1. Let S be a closed (p, q)-convex set, q >_ 1, S having no isolated 

points, and let k be the unique integer for which c,(k) = 0 and cs(k + l) = 1. 

Then c~(m) = tr(k, m) for  every m. 

COROLLARY 2. Let S be a closed (p,q) convex set, q > 1, S having exactly j 

isolated points, and let k be the unique integer .for which cs(k + j ) =  0 and 

cs(k + j + 1) = 1. Then c,(m +j)  = a(k, m). 

3. Minimal m subsets of S 

Let S be an (m, n)-convex set. We say an m member subset T of S is a minimal 

m subset of S iff exactly c~(m) of the segments determined by T lie in S. The 

following lemma and theorem reveal the combinatorial structure of such a T. 

LEMMA 2. Let S be a closed set having no isolated points, with c~(k)= 0 

and cs(k + 1) = 1. I f  T is a minimal m subset of S, then no point of T sees more 

than [ m k l ]  of the remaining points of T. Moreover, T contains a descending 

chain of sets {Tj} where each Tj is a minimal j subset of S, 1 < j <= m. 

PROOF. I f s o m e x i n T s e e s v i a S m o r e t h a n [ - ~ b  1] of the  points in T ~ { x } ,  
l ~ . . I  

then s i n c e o ( k , m - 1 ) +  ~ - ] = a ( k , m ) = c s ( m ) ,  T ~  {x} necessarily has 

fewer than a(k, m - 1) corresponding segments in S. However o(k, m - I) 

= c,(m - 1), so this is impossible. We have a contradiction, and the first statement 

is proved. 
r ~  I1  

ByLemma 1, some point x 1 in T sees via S at least points o f  
L ~ d  

T ~ (x },sosuchanx, mustseevia Sexactly l points of T~(x,} ,  

and T ~ {xx} has exactly c~(m - 1) corresponding segments in S. Thus T ~ {xl} 

--- Tin-1 is a minimal (m - 1) subset of S. By induction it is easy to define a 

descending chain {Tj} of subsets of T, 1 < j  < m, where each Tj is a minimalj  

subset of S. 

REMARK. Lemma 2 may be suitably adapted in case S has isolated points. 

THEOREM 4. Let S be a closed set having no isolated points, with cs(k ) = 0 

and c~(k + 1) = I. I f  T is a minimal m subset of S, then the members oJ T may 
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be partitioned into disjoint subsets Ci, l < i  < [ m + k - 1 ]  = = k . , such that for  
L -I  

1 < i < [ k ] , e a c h C ,  cons i s t so f exac t l ykv i sua l l y independen tpo in t s ,  and 
I - - I  

k [ k  ] visually independentpoints. Ctmlk~+ l consists of  m -- 

PROOF. The proof is by induction. If 1 < rn < k, then T = C1, and the theorem 

is trivially satisfied. If m = k + 1, T necessarily contains a k member visually 

independent subset Ca. The remaining point in T yields C2. 

Assume the result true for m, k + 1 < m < n, to prove for m = n. Let j denote 

the smallest positive integer for which k divides n - j .  Clearly 1 < j < k. Using 

the procedure employed in the proof of Lemma 2, we may select points 

x a , x 2 , . . . , x j i n  T s u c h t h a t f o r e a c h i ,  x, s e e s v i a S e x a c t l y  [n---k-JJpointsof 

T ~ {xa, "..,x,-a}, and T ,,~ {xl, ..., x,} is a minimal (n - i)subset of S, 1 < i <  j. 

ByLemma2,  n o p o i n t o f T s e e s m o r e t h a n  [ n - - ~  1] of the remaining points of 
L ,~ ..I 

r .  Thussince for l i_<j, every x, sees no point o f  

{x~,...,x,_a}, and the set {xa, . . . ,x i}  is visually independent. 

Since T ~ {xa, ...,xj} is a minimal (n - j )  subset of S, by our induction hy- 

pothesis, this set has [ n - J +_kk - 1  ] _ n - j - [ n ~ - k  1 ] disjoint k member sub- 

sets, each one visually independent. These sets, together with {x~, . . . ,x j} are seen 

to be the required sets. 

If  k divides n, t h e n j = k  and we have + 1  = ~ -  k member sets. 

Otherwise we have = disjoint k member sets and one j = n - k 

member set. This completes the induction and finishes the proof. 

It is interesting to notice that if we do not require the set S to be closed, then 

for any m > n > 1, there is a set which is (m, n)-convex and connected. Also, S 

may be constructed so that it is (m0,0)-convex for every m o < rn, as Example 1 

reveals. 

EXAMPLE 1. Let T be a triangle in R 2, L one of its sides. For m = n -t- 1, 

choose points x~, . . . , x ,  on L with xl and x, vertices of T. Let S = ( T ~  L) 

u {xa, "",x,}. Then S is (n + 1, n)-convex. If n = 1, S is convex. (See Fig. 1.) 
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X I x 2 Xn 

Fig. 1 

Inductively, for m = n + j,  j > 2, join j - 1 copies of S as in Fig 2. (Note that 

two successive copies share all but two of their special xi points.) 

X 1 Xn 

A 
Xn+j-I 

Fig. 2 

Figure 2 may be altered by slicing off i peaks, 0 < i < j - 2. The resulting figure 

Si is exactly (n + j,  n)-convex and (too, 0)-convex for every m 0 < n + j. 

Moreover, n and j do not determine c~(m) for m > n + j. For 0 < i < j - 2 and 

m - (n + j) ->_ j - 2 - i, each St set has a different value for % (m), m > n + j 

Of course a(n + j -  1,m) is still a lower bound for q(m) by the proof of 

Theorem 3. 

Although the question concerning the existence of an exactly (m, n)-convex set, 

n > m > 4, is not completely solved, the existence of various (m, n)-convex sets 

can be verified by appropriately adapting the sets in Example 1. For  instance, in 

Fig. 1, inserting j segments [x~_l,x~] which alternate along L, we obtain an 

exactly (n + 1, n + j)-convex set for 2 < n, 1 < j < In/2].  Inserting j consecutive 

segmentsal~ L' we ~ an exactly (n + X'n + (J + 1)) -c~ set 

l < j < n - l . =  = 

Of  course, if we require our set to be closed, the question is settled by the corol- 

laries to Theorem 3. The construction of a closed, connected, exactly (k + 1, 1)- 

convex set is easy, k > 1. Hence for m ~ 1, n > 0, there is a closed connected set 

which is exactly (m, n)-convex if and only if for some 1 < k < m, n = a(k, m). 
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Similarly, if we allow isolated points, for mo > 1, n > 0, there is a closed, exactly 

(mo, n)-convex set if and only if there exist some j > 0 and some 1 < k < m such 

that mo = m + j and n = tr(k, m). 

NOTE. The referee has pointed out that a paper soon to be published by 

J. Kaapke [I]  offers an alternate approach to the proof of Theorem 1. Also, 

alternate proofs of Theorems 2 and 3 may be obtained from a theorem of Tur in  

13] and a formula in remark 2 of I-2]. 
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